100人でじゃんけんをする。
1回目の決着がつくのは、
①全員が、チョキ又はパーであるが、オールチョキ、オールパーでないこと。
すなわち、
(2/3)^100-(1/3)^100-(1/3)^100 回目
②同様に、パーかグーであるが、オールパー、オールグーでないこと。
③同様に、グーかチョキであるが、オールグー、オールチョキでないこと。
①=②=③なので
3×((2/3)^100-(1/3)^100-(1/3)^100)=(1/3)^99×(2^100-2) 回目
となる。
一般にN人でじゃんけんすると、1回目の勝負がつく期待値は、
1÷((1/3)^(N-1)×(2^N-2)) 回目
=3^(N-1)/(2^N-2) 回目
になる。
あいこになる確率は、この逆数の余事象なので
1-(2^N-2)/3^(N-1)